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This publication is based upon an introductory, half day class that I presented 
many years ago.  It is designed to provide the new comer with an entry level 
knowledge of centrifugal pump theory and operation.  Of equal importance, it 
will make him aware of those areas that will require additional study if he is to 
become truly proficient.  

You will notice references to the “Puzzler”. These brain teasing discussions 
investigate the specifics of pumps, motors, and their controls and can be 
downloaded from my web site. This introduction, on the other hand, is much 
more structured and sticks to the basics.  

Some of the figures you will see have been reduced in size substantially. If you 
have difficulty reading them, just increase their size using the Acrobat scaler. If 
you have comments or suggestions for improving our educational material, 
please email me at joe.evans@pentairwater.com.  

INTRODUCTION  

Definition & Description  

By definition, a centrifugal pump is a machine. More specifically, it is a machine 
that imparts energy to a fluid. This energy infusion can cause a liquid to flow, 
rise to a higher level, or both.  

The centrifugal pump is an extremely simple machine. It is a member of a family 
known as rotary machines and consists of two basic parts: 1) the rotary element 
or impeller and 2) the stationary element or casing (volute). The figure at the top 
of the following page is a cross section of a centrifugal pump and shows the two 
basic parts.  
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Figure 1  

The centrifugal pump’s function is as simple as its design. It is filled with liquid 
and the impeller is rotated. Rotation imparts energy to the liquid causing it to 
exit the impeller’s vanes at a greater velocity than it possessed when it entered. 
This outward flow reduces the pressure at the impeller eye, allowing more liquid 
to enter. The liquid that exits the impeller is collected in the casing (volute) where 
its velocity is converted to pressure before it leaves the pump’s discharge.  

A Very Brief History  

The centrifugal pump was developed in Europe in the late 1600’s and was seen 
in the United States in the early 1800’s. Its wide spread use, however, has 
occurred only in the last seventy-five years. Prior to that time, the vast majority 
of pumping applications involved positive displacement pumps.  

The increased popularity of centrifugal pumps is due largely to the 
comparatively recent development of high speed electric motors, steam turbines, 
and internal combustion engines. The centrifugal pump is a relatively high speed 
machine and the development of high speed drivers has made possible the 
development of compact, efficient pumps. 
  
Since the 1940's, the centrifugal pump has become the pump of choice for many 
applications. Research and development has resulted in both improved 
performance and new materials of construction that have greatly expanded it's 
field of applicability. It is not uncommon today to find efficiencies of 93%+ for 
large pumps and better than 50% for small fractional horsepower units.  

Modern centrifugal pumps have been built to meet conditions far beyond what 
was thought possible fifty to sixty years ago. Pumps capable of delivering over 



1,000,000 gallons per minute at heads of more than 300 feet are common in the 
nuclear power industry. And, boiler feed pumps have been developed that 
deliver 300 gallons per minute at more than 1800 feet of head.  

THEORY  

In operation, a centrifugal pump “slings” liquid out of the impeller via 
centrifugal force. Now centrifugal force, itself, is a topic of debate. Although I 
will not go into detail here, it is considered by many, including myself, to be a 
false force. For our purposes here, we will assume that it is a real force. Refer to 
the “False Force Puzzler” for more information.  

Centrifugal Force  

A classic example of the action of centrifugal force is shown below. Here, we see 
a pail of water swinging in a circle. The swinging pail generates a centrifugal 

 
Figure 2  

force that holds the water in the pail. Now, if a hole is bored in the bottom of the 
pail, water will be thrown out.  The distance the stream carries (tangent to the 
circle) and the volume that flows out (per unit time) depends upon the velocity ( 
in ft/sec) of the rotating pail. The faster the pail rotates the greater the centrifugal 
force and therefore the greater the volume of water discharged and the distance 
it carries.  

The description above could be considered that of a crude centrifugal pump 
(sans volute of course). It demonstrates that the flow and head (pressure) 
developed by a centrifugal pump depends upon the rotational speed and, more 
precisely, the peripheral velocity of its impeller (pail).  

Peripheral Velocity & Head  

Gravity is one of the more important forces that a centrifugal pump must 
overcome. You will find that the relationship between final velocity, due to 
gravity, and initial velocity, due to impeller speed, is a very useful one .  



If a stone is dropped from the top of a building it's velocity will increase at a rate 

of 32.2 feet per second for each second that it falls. This increase in velocity is 

known as acceleration due to gravity. Therefore if we ignore the effect of air 

resistance on the falling stone, we can predict the velocity at which it will strike 

the ground based upon its initial height and the effect of acceleration due to 

gravity.  The equation that describes the relationship of velocity, height, and 

gravity as it applies to a falling body is:  
 

v2 = 2gh  

Where:  

v = The velocity of the body in ft/sec  

g = The acceleration due to gravity @ 32.2 ft/sec/sec (or ft/sec2)  

h = The distance through which the body falls  

For example if a stone is dropped from a building 100 feet high:  

v2 = 2 x 32.2 ft/sec2 x 100 ft  

v2 = 6440 ft2/sec2  

v = 80.3 ft/sec  

The stone, therefore, will strike the ground at a velocity of 80.3 feet per second.  

This same equation allows us to determine the initial velocity required to throw 
the stone to a height of 100 feet. This is the case because the final velocity of a 
falling body happens to be equal to the initial velocity required to launch it to 
height from which it fell. In the example above, the initial velocity required to 
throw the stone to a height of 100 feet is 80.3 feet per second, the same as its final 
velocity.  

The same equation applies when pumping water with a centrifugal pump. The 
velocity of the water as it leaves the impeller determines the head developed. In 
other words the water is “thrown” to a certain height. To reach this height it 
must start with the same velocity it would attain if it fell from that height.  

 



If we rearrange the falling body equation we get:  

h = v2/2g  

Now we can determine the height to which a body (or water) will rise given a 
particular initial velocity. For example, at 10 Ft per Sec:  

h = 10 ft/sec x 10 ft/sec / 2 x 32.2 ft/sec2  

h = 100 ft2/sec2 / 64.4 ft/sec2  

h = 1.55 ft  

If you were to try this with several different initial velocities, you would find out 
that there is an interesting relationship between the height achieved by a body 
and its initial velocity. This relationship is one of the fundamental laws of 
centrifugal pumps and we will review it in detail a little later. As a finale to this 
section, let's apply what we have learned to a practical application.  

Problem: For an 1800 RPM pump, find the impeller diameter necessary to 
develop a head of 200 feet.  

First we must find the initial velocity required to develop a head of 200 feet:  

v2 = 2 gh v2 = 2 x 32.2 ft/sec2 x 200 ft  

v2 = 12880 ft2/sec2  

v = 113 ft/sec  

We also need to know the number of rotations the impeller undergoes each 
second:  

1800 RPM / 60 sec = 30 RPS  

Now we can compute the number of feet a point on the impellers rim travels in a 
single rotation:  

113 ft/sec / 30 rotations/sec = 3.77 ft/rotation  

 

 



Since feet traveled per rotation is the same as the circumference of the impeller 
we can compute the diameter as follows:  

Diameter = Circumference / 

Diameter = 3.77 Ft / 3.1416  

Diameter = 1.2 Ft or 14.4 In  

Therefore an impeller of approximately 14.4" turning at 1800 RPM will produce a 
head of 200 Feet.  

It just so happens that water, flowing from the bottom of a tank, follows the same 
rules.  See the “Up and Down Puzzler” to understand how.  

 

THE PERFORMANCE CURVE 

Once a pump has been designed and is ready for production, it is given a 
complete and thorough test. Calibrated instruments are used to gather accurate 
data on flow, head, horsepower, and net positive suction head required. During 
the test, data is recorded at shut off (no flow), full flow, and 5 to 10 points 
between. These points are plotted on a graph with flow along the X axis 
(abscissa) and head along the Y axis (ordinate). The efficiency, brake horsepower, 
and Net Positive Suction Head Required (NPSHR) scales are also plotted as 
ordinates. Therefore, all values of head, efficiency, brake horsepower, and 
NPSHR are plotted versus capacity and smooth curves are drawn through the 
points. This curve is called the Characteristic Curve because it shows all of the 
operating characteristics of a given pump. The curve below is an example.  

 
Figure 3  



For publication purposes, it is much more convenient to draw several curves on 
a single graph. This presentation method shows a number of Head-Capacity 
curves for one speed and several impeller diameters or one impeller diameter 
and several different speeds for the same pump. This type of curve is called an 
Iso-Efficiency or Composite Characteristic Curve. You will note that the 
efficiency and horsepower curves are represented as contour lines. Also the 
NPSHR curve applies only to the Head-Capacity curve for the full size impeller.  
NPSHR will increase somewhat for smaller diameters. The curve below is a 
typical Composite Curve.  

 
Figure 4  

The method of reading a performance curve is the same as for any other graph. 
For example; in Figure 3, to find the head, horsepower and efficiency at 170 
GPM, you locate 170 GPM on the abscissa and read the corresponding data on 
the ordinate. The point on the head / capacity curve that aligns with the highest 
point on the efficiency curve is known as the Best Efficiency Point or BEP. In 
Figure 3, it occurs at approximately 170 GPM @ 125’TDH.  

The composite curve shown in Figure 4 is read in much the same manner. Head 
is read exactly the same way; however, efficiency must be interpolated since the 
Head-Capacity curve seldom falls exactly on an efficiency contour line. 
Horsepower can also be interpolated as long as it falls below a horsepower 
contour line. If the Head-Capacity curve intersects or is slightly above the 
horsepower contour line, brake horsepower may need to be calculated. NPSHR 
is found in the same manner as head. We will discuss NPSHR in detail a little 
later.  

Calculating Brake Horsepower (BHP)  

Usually, if a specific Head-Capacity point falls between two horsepower contour 



lines, the higher horsepower motor is selected. Sometimes, however, we may 
need to know the exact horsepower requirement for that point of operation. If so 
Brake BHP for a centrifugal pump can be calculated as follows:  

BHP = GPM X Head / 3960 X Efficiency  

For example, in Figure 4, the BHP required at 170 GPM for the 5 1/2" impeller is:  

BHP = 170 X 90 / 3960 X .74  

BHP = 15300 / 2860.4  

BHP = 5.22  

Many operating points will fall between the various curves, so it is important 
that you understand a composite curve well enough to interpolate and find the 
approximate values.  

A pump is typically designed for one specific condition but its efficiency is 
usually high enough on either side of the design point to accommodate a 
considerable capacity range. Often, the middle one third of the curve is suitable 
for application use.  

Different pumps, although designed for similar head and capacity can vary 
widely in the shape of their Characteristic Curves. For instance, if two pumps are 
designed for 200 GPM at 100' TDH, one may develop a shut off head of 110' 
while the other may develop a shut off head of 135'. The first pump is said to 
have a flat curve while the second is said to have a steep curve. The steepness of 
the curve is judged by the ratio of the head at shut off to that at the best efficiency 
point. Each type of curve has certain applications for which it is best suited.  

Operation in Series (Booster Service)  

When a centrifugal pump is operated with a positive suction pressure, the 
resulting discharge pressure will be the sum of the suction pressure and the 
pressure normally developed by the pump when operating at zero suction 
pressure. It is this quality of a centrifugal pump that makes it ideally suited for 
use as a booster pump. This quality also makes it practical to build multi-stage 
(multiple impeller) pumps. A booster pump takes existing pressure, whether it 
be from an elevated tank or the discharge of another pump, and boosts it to some 
higher pressure.  

Two or more pumps can be used in series to achieve the same effect. The figure 
below shows the curves for two identical pumps operated in series. Both the 



head and horsepower at any given point on the capacity curve are additive. 
Capacity, however, remains the same as that of either one of the pumps.  

 

Figure 5  

Parallel Operation  

Two or more pumps may also be operated in parallel. The curves developed 
during parallel operation are illustrated below.  

 

Figure 6 
 

Pumps operating in parallel take their suction from a common header or supply 
and discharge into a common discharge. As Figure 6 illustrates, the flows and 
horsepower are additive. You will notice that, while head does not change, flow 
is almost doubled at any given point.  

 



THE AFFINITY LAWS  

The Centrifugal Pump is a very capable and flexible machine. Because of this it is 
unnecessary to design a separate pump for each job. The performance of a 
centrifugal pump can be varied by changing the impeller diameter or its 
rotational speed. Either change produces approximately the same results. 
Reducing impeller diameter is probably the most common change and is usually 
the most economical. The speed can be altered by changing pulley diameters or 
by changing the speed of the driver. In some cases both speed and impeller 
diameter are changed to obtain the desired results.  

When the driven speed or impeller diameter of a centrifugal pump changes, 
operation of the pump changes in accordance with three fundamental laws. 
These laws are known as the "Laws of Affinity". They state that:  

1) Capacity varies directly as the change in speed  

2) Head varies as the square of the change in speed  

3) Brake horsepower varies as the cube of the change in speed  

If, for example, the pump speed were doubled:  

1) Capacity will double  

2) Head will increase by a factor of 4 (2 to the second power)  

3) Brake horsepower will increase by a factor of 8 (2 to the third power)  
These principles apply regardless of the direction (up or down) of the speed or 
change in diameter.  

Consider the following example. A pump operating at 1750 RPM, delivers 210 
GPM at 75' TDH, and requires 5.2 brake horsepower. What will happen if the 
speed is increased to 2000 RPM? First we find the speed ratio.  

Speed Ratio = 2000/1750 = 1.14  

From the laws of Affinity:  

1) Capacity varies directly or: 

 1.14 X 210 GPM = 240 GPM 



2)  Head varies as the square or:

 

 1.14 X 1.14 X 75 = 97.5' TDH 

3)  BHP varies as the cube or:

 

 1.14 X 1.14 X 1.14 X 5.2 = 7.72 BHP 

Theoretically the efficiently is the same for both conditions. By calculating 
several points a new curve can be drawn.  

Whether it be a speed change or change in impeller diameter, the Laws of 
Affinity give results that are approximate. The discrepancy between the 
calculated values and the actual values obtained in test are due to hydraulic 
efficiency changes that result from the modification. The Laws of Affinity give 
reasonably close results when the changes are not more than 50% of the original 
speed or 15% of the original diameter.  

Here, we have described the affinity laws and applied them to a few examples. 
For an in depth discussion and proof of their validity, see the “Affinity Puzzler”.  

 

SPECIFIC GRAVITY AND VISCOSITY  

Specific Gravity (or why head is usually expressed in feet)  

The Specific Gravity of a substance is the ratio of the weight of a given volume of 
the substance to that of an equal volume of water at standard temperature and 
pressure (STP). Assuming the viscosity of a liquid is similar to that of water the 
following statements will always be true regardless of the specific gravity:  

1) A Centrifugal pump will always develop the same head in feet regardless of a 
liquid’s specific gravity.  

2) Pressure will increase or decrease in direct proportion to a liquid’s specific 
gravity.  

3) Brake HP required will vary directly with a liquid’s specific gravity.  

The Figure on the following page illustrates the relationship between pressure 
(in psi) and head (in ft) for three liquids of differing specific gravity.  



 
                                  Figure 7 
 

We can see that the level in each of the three tanks is 100 feet. The resulting 
pressure at the bottom of each varies substantially as a result of the varying 
specific gravity. If, on the other hand we keep pressure constant as measured at 
the bottom of each tank, the fluid levels will vary similarly.  

A centrifugal pump can also develop 100' of head when pumping water, brine, 
and kerosene. The resulting pressures, however, will vary just as those seen in 
Figure 7. If that same pump requires 10 HP when pumping water, it will require 
12 HP when pumping brine and only 8 HP when pumping kerosene.  

The preceding discussion of Specific Gravity illustrates why centrifugal pump 
head (or pressure) is expressed in feet. Since pump specialists work with many 
liquids of varying specific gravity, head in feet is the most convenient system of 
designating head. When selecting a pump, always remember that factory tests 
and curves are based on water at STP. If you are working with other liquids 
always correct the HP required for the specific gravity of the liquid being 
pumped.  

The Effect of Viscosity  

Viscosity is a fluid property that is independent of specific gravity. Just as 
resistivity is the inherent resistance of a particular conductor, viscosity is the 
internal friction of a fluid. The coefficient of viscosity of a fluid is the measure of 
its resistance to flow. Fluids having a high viscosity are sluggish in flow. 
Examples include molasses and heavy oil. Viscosity usually varies greatly with 



temperature with viscosity decreasing as temperature rises.  

The instrument used to measure viscosity is the viscometer. Although there are 
many, the Saybolt Universal is the most common. It measures the time in 
seconds required for a given quantity of fluid to pass through a standard orifice 
under STP. The unit of measurement is the SSU or Seconds Saybolt Universal.  

High viscosity can gum up (pun intended) the internals of a centrifugal pump. 
Viscous liquids tend to reduce capacity, head, and efficiency while increasing the 
brake HP. In effect this tends to steepen the head - capacity and HP curves while 
lowering the efficiency curve.  

The performance of a small Centrifugal Pump, handling liquids of various 
viscosities, is shown graphically in the figure below.  

 

Figure 8  

Normally, small and medium sized centrifugal pumps can be used to handle 
liquids with viscosities up to 2000 SSU. Below 50 SSU the Characteristic Curves 
remain about the same as those of water; however, there is an immediate 
decrease in efficiency when viscosity increases over that of water. Viscosities 
over 2000 SSU are usually better suited for positive displacement pumps.  



FRICTION AND FRICTION HEAD  

Friction occurs when a fluid flows in or around a stationary object or when an 

object moves through a fluid. An automobile and an aircraft are subjected to the 

effects of friction as they move through our atmosphere. Boats create friction as 

they move through the water. Finally liquids create friction as they move 

through a closed pipe. 
 

A great deal of money has been spent on the design and redesign of boats, 
aircraft, and autos to reduce friction (often referred to as drag). Why? Because 
friction produces heat and where there is heat there is energy, wasted energy 
that is. Making these vehicles "slippery" reduces friction therefore reducing the 
energy required to get them from point A to point B.  

As water moves through a pipe its contact with the pipe wall creates friction. As 
flow (or more correctly velocity) increases, so does friction. The more water you 
try to cram through a given pipe size the greater the friction and thus the greater 
the energy required to push it through. It is because of this energy that friction is 
an extremely important component of a pumping system.  

Laminar flow describes the flow of a liquid in a smooth pipe. Under conditions 
of laminar flow, the fluid nearest the pipe wall moves more slowly than that in 
the center. Actually there are many gradients between the pipe wall and the 
center. The smaller the pipe diameter, the greater the contact between the liquid 
and the wall thus the greater the friction. The figure below shows laminar flow 
through two cross sections of a pipe. The vector lengths in the right hand 
drawing are proportional to the velocity of the flowing liquid.  

 
Figure 9 

 
Friction or Friction Head is defined as the equivalent head in feet of liquid 
necessary to overcome the friction caused by flow through a pipe and its 
associated fittings.  

Friction tables are universally available for a wide range of pipe sizes and 
materials. They are also available for various pipe fittings and valves. . These 



tables show the friction loss per 100 feet of a specific pipe size at various flow 
rates. In the case of fittings, friction is stated as an equivalent length of pipe of the 
same size. An example is shown below.  

 

                                        Figure 10 
 

It is evident from the tables, that friction increases with flow. It is also evident 
that there is an optimum flow for each pipe size, after which friction can use up a 
disproportionate amount of the pump output. For example, 100 GPM for short 
lengths of 2" pipe may be acceptable; however, over several hundred feet the 
friction loss will be unacceptable. 2 1/2" pipe will reduce the friction by 2/3 per 



100 feet and is a much better choice for a 200 foot pipeline. For systems that 
operate continuously 3" pipe may be the appropriate choice.  

Many friction tables show both friction loss and fluid velocity for a given flow 
rate. Generally it is wise to keep fluid velocity under 10 feet per second. If this 
rule is followed, friction will be minimized.  

The friction losses for valves and fittings can also add up . 90 degree turns and 
restrictive valves add the most friction. If at all possible straight through valves 
and gentle turns should be used.  

Consider this problem: What head must a pump develop if it is to pump 200 
GPM through a 2.5" pipe, 200 feet long, and to an elevation of 75'? Use the table 
in Figure 10.  

Elevation = 75'  

Friction 2.5” Pipe = 43' / 100ft or 86'  

Total head = 75' + 86' = 161' TDH  

Use of 3" pipe in the above problem will reduce friction head by 30% and 
although it will cost more initially, it will pay for itself in energy savings over a 
fairly short period of time.  

The “Hot and Cold” Puzzler delves deeper into fluid friction and its 
consequences.  

SUCTION CONDITIONS  

Suction conditions are some of the most important factors affecting centrifugal 
pump operation. If they are ignored during the design or installation stages of an 
application, they will probably come back to haunt you.  

Suction Lift  

A pump cannot pull or "suck" a liquid up its suction pipe because liquids do not 
exhibit tensile strength. Therefore, they cannot transmit tension or be pulled. 
When a pump creates a suction, it is simply reducing local pressure by creating a 
partial vacuum. Atmospheric or some other external pressure acting on the 
surface of the liquid pushes the liquid up the suction pipe into the pump.  

Atmospheric pressure at sea level is called absolute pressure (PSIA) because it is 
a measurement using absolute zero (a perfect vacuum) as a base. If pressure is  



measured using atmospheric pressure as a base it is called gauge pressure (PSIG 
or simply PSI).  

Atmospheric pressure, as measured at sea level, is 14.7 PSIA. In feet of head it is:  

Head = PSI X 2.31 / Specific Gravity  

For Water it is:  

Head = 14.7 X 2.31 / 1.0 = 34 Ft  

Thus 34 feet is the theoretical maximum suction lift for a pump pumping cold 
water at sea level. No pump can attain a suction lift of 34 ft; however, well 
designed ones can reach 25 ft quite easily.  

You will note, from the equation above, that specific gravity can have a major 
effect on suction lift. For example, the theoretical maximum lift for brine (Specific 
Gravity = 1.2) at sea level is 28 ft.. The realistic maximum is around 20ft. 
Remember to always factor in specific gravity if the liquid being pumped is 
anything but clear, cold (68 degrees F) water.  

In addition to pump design and suction piping, there are two physical properties 
of the liquid being pumped that affect suction lift.  

1) Maximum suction lift is dependent upon the pressure applied to the 
surface of the liquid at the suction source. Maximum suction lift decreases 
as pressure decreases.  

2) 2) Maximum suction lift is dependent upon the vapor pressure of the 
liquid being pumped. The vapor pressure of a liquid is the pressure 
necessary to keep the liquid from vaporizing (boiling) at a given 
temperature. Vapor pressure increases as liquid temperature increases. 
Maximum suction lift decreases as vapor pressure rises.  

It follows then, that the maximum suction lift of a centrifugal pump varies 
inversely with altitude. Conversely, maximum suction lift will increase as the 
external pressure on its source increases (for example: a closed pressure vessel). 
The figure on the following page shows the relationship between altitude and 
atmospheric pressure.  



 

Figure 11  

A pumping application located at an elevation of 5000 feet will experience a 
reduction in atmospheric pressure of approximately six feet. This will result in a 
reduction in NPSHA (discussed in the next section) by the same amount. 
Elevation must be factored into a pumping application if the installation is more 
than a few hundred feet above sea level  

The maximum suction lift of a liquid varies inversely with the temperature of the 
liquid. The higher the temperature, the higher the vapor pressure and thus 
suction lift is decreased. If a centrifugal pump is used to pump a liquid that is too 
hot the liquid will boil or vaporize in the pump suction. This condition is called 
cavitation and will be discussed in more detail later.  
 

The figure below shows the relationship between vapor pressure and 

temperature for clear,cold water.  

    Figure 12  



At a temperature of 70 degrees F, a pressure of only one foot is required to keep 
water in the liquid state. As its temperature rises, however, more and more 
pressure is required. At about 210 degrees, a pressure of 34 feet or, sea level 
atmospheric pressure, is required. As it rises to 212 degrees the water will boil 
unless some additional pressure is applied. When pumping liquids at elevated 
temperatures, the liquid’s vapor pressure at that temperature must be included 
in the NPSHA calculation.  

Capacity and Suction Lift  

The suction lift of a centrifugal pump also varies inversely with pump capacity. 
This is illustrated in the figure at the top of the adjoining column. Figure 13 
shows how the head - capacity curve falls off quickly at various suction lifts. You 
will notice that maximum suction lift increases as pump capacity decreases. For 
this reason pumps used in high suction lift applications are selected to operate in 
a range considerably to the left of their peak efficiency.  

 

Figure 13  

Net Positive Suction Head (NPSH)  

Net Positive Suction Head Required (NPSHR) is a function of a specific pump 
design. In simple terms it is the pressure, measured at the centerline of the pump 
suction, necessary for the pump to function satisfactorily at a given flow. 
Although NPSHR varies with flow, temperature and altitude have no effect.  

Net Positive Suction Head Available (NPSHA) is a characteristic of the system in 
which the pump operates. It depends upon the elevation or pressure of the 
suction supply, friction in the suction line, elevation of the installation, and the 
vapor pressure of the liquid being pumped.  

Both available and required NPSH vary with the capacity of a given pump and 



suction system. NPSHA is decreased as the capacity is increased due to the 
increased friction losses in the suction piping. NPSHR increases approximately 
as the square of capacity since it is a function of the velocities and friction in the 
pump inlet. NPSHA can be calculated as follows:  

NPSHA = Ha + Hs - Hvp  

Where:  
Ha = Atmospheric pressure in feet  
Hs = Total suction head or lift in feet  
Hvp = Vapor pressure in feet For example a pump installed at an 
elevation of 2500 ft and has a suction lift of 13 ft while pumping 50 degree 
water. What is NPSHA?  

NPSHA = Ha + Hs - Hvp  

NPSHA = 31 - 13 - .41  

NPSHA = 17.59 ft  

Often a two foot safety margin is subtracted from NPSHA to cover unforeseen 
circumstances. When selecting a pump for the conditions above, the NPSHR as 
shown on the pump's characteristic curve should be 
 

15.59 ft or less (17.59 - 2). 

Working in the opposite direction, we have a pump that requires 8 ft of NPSH at 
120GPM. If the pump is installed at an elevation of 5000 ft and is pumping cold 
water at 60 degrees, what is the maximum suction lift it can attain?  

NPSH = Ha + Hs - Hvp  

8 + 2 = 28.2 - Hs - .59  

Hs = 28.2 - 8 - 2 - .59  

Hs = 17.61 ft (Including the 2 ft margin of safety)  

The preceding has dealt only with water. The same general principles 
apply to other liquids; however, vapor pressure must be factored into the 
equations. For rough approximations where the vapor pressure is 
unknown, a pump will usually operate satisfactorily if the NPSHA is 
equal to or greater than that required for water under similar conditions. 
This method may be used only when the viscosity of the liquid is 

approximately the same as water. 


